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A n a l y t i c  W a v e s  

D a v i d  V a k m a n  1 

Received May 20, 1996 

Physical aspects of wave theory are discussed. Analytic waves (AW) neatly define 
the amplitude and frequency of real running waves and generalize and justify 
some points of wave theory. It is shown that the local group delay averaged in 
frequency defines the velocity of a wave center at each point. An asymptotic 
solution is developed for running spectra in slowly varying media. Also, 
Whitham's method is generalized not only for the frequency but also the amplitude 
of a wave. The theory is applied to quantum mechanics, and the paradox of 
tunneling is clarified. This paradox is not specifically quantum but occurs and 
can be explained in a classical area. 

1. I N T R O D U C T I O N  

We study one-d imens iona l  scalar  waves  in nonun i fo rm dispers ive  m e d i a  

that obey the equat ion 

Ox 2 c2 L x, ~ = 0 where L x, ~ = otn(x) ~-~ (1) 

Here u(x, t) is a real  f ie ld  (wave)  at a point  x at an instant  t, and c is the 
l imit  veloci ty  o f  p ropaga t ion  (l ight  veloci ty) .  Our  a im is to explore  the 
ampl i tude  and f requency o f  running  waves.  

The l inear  different ia l  opera tor  L as g iven in (1) def ines  d ispers ion 

proper t ies  o f  a med ium.  Wri t ing  u(x, t) in the form 

l I ~ I ~ U ( k , o ~ ) e - i t o ' t - U ) d t o d k  u(x, t) - (2xr)2 (2) 

1213 Bennett Ave, Apt 2D, New York, NY 10040. 

227 
0020-7748/97/0100-0227512.50/0 • 1997 Plenum Publishing Corporation 



228 Vakman 

and substituting into (1), we find the dispersion relation that defines the wave 
number k as a function of to and x: 

k2(x, to) = - ~  L(x, - i to )  or  k(x, to) = +_1 ~ / -L (x ,  - i to )  (3) 
C 

Here +_ specifies the direction of propagation. If L is independent of x, the 
medium is uniform and k depends on to only. If also L = a2/0t 2 and k = 
+_to~c, no dispersion exists, and a signal propagates without distortion. Then 
(1) is the classical wave equation. 2 

In turn, the wave number determines the group speed v(x, to) and the 
group delay -r(x, to): 

Oto 1 Ok 
v(x, to) Ok '  "r(x, to) (4) 

v Oto 

In a strict sense, group speed and delay are defined for harmonic waves of  
constant frequency. However, they are also used generally when replacing 
the spectral frequency to by the local (instantaneous) frequency to(x, t ) .  
In particular, Whitham's method (Whitham, 1974) discussed in Section 4 
determines the local frequency as a function of t and x. 

A slowly varying amplitude and frequency of a wave are often advanta- 
geous, but within a framework of real waves 

u(x, t) = a(x, t)cos d~(x, t) (5) 

we do not know what they are: The amplitude a(x, t), phase ~b(x, t), and 
instantaneous frequency to(x, t) = O~lOt are ambiguous since (5) is an equation 
with two unknowns (a and ~b). For the same reason, the amplitudes and 
frequencies of real signals u(t) = a(t) cos ~b(t) are also ambiguous. The 
analytic signal (AS) introduced in Gabor (1946) is a cogent way for defining 
them unambiguously. 

In Section 2 we discuss the AS and introduce analytic waves (AW) as the 
analogous method for running waves. Then we obtain the following results. 

In a uniform dispersive medium, a signal is distorted, but the wave 
center moves with a constant averaged group delay per unit distance and 
with a constant velocity. On the other hand, the duration of a wave varies 
with distance due to the phase interaction in a medium. In nonuniform media, 
the local averaged group delay defines the velocity of a center at each point. 
Although a center and duration can be defined for real running waves, they 

2Many wave equations can be reduced to (1). For the beam equation 04ulOx 4 + ot2(x) 02ulOfl 
= 0, the dispersion relation takes the form k 4 = ,~2(x),o2. Solving it for k 2 and using the 
correspondence OlOx ~ ik and OlOt ~ - i ~  we obtain equation (1) with L = +-is(x) OlOt. 
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are the same as for the AW. We also discuss waves in damping media and 
a paradox of causality (Section 3). 

An asymptotic method is developed for running spectra in slowly varying 
media with dispersion or damping, and the waves can be found numerically 
with the FFT. Whitham's approximate method was originally suggested with 
no explicit definition of a local frequency, but the AW was implied. We 
justify and modify Whitham's method to find not only the frequency but also 
the amplitude of a wave. We also generalize this method for slowly varying 
media (Section 4). 

In quantum mechanics, the center of a wave packet represents a classical 
particle. For posi t ive  potentials, SchrOdinger's wave packets are the AS as 
time functions, and for particles moving in one direction, they are also 
the AW. In damping media, classical waves and quantum particles show a 
paradoxical violation of causality. For a particle tunneling through a barrier, 
the paradox is concerned with a passage time. A number of approaches have 
recently been suggested for defining this time (Landauer and Martin, 1994; 
Kotler and Nitzan, 1988). However, the paradox disappears if we associate 
the wave packet with an ensemble of particles instead of a single particle 
(Section 5). 

2. ANALYTIC SIGNALS AND ANALYTIC WAVES 

In this section, we discuss analytic signals and introduce analytic waves 
as a generalization for real waves. We also introduce running spectra of the 
waves and derive equation for the spectra equivalent to (1). 

2.1. Analytic Signals 

The AS is a comp lex  signal w(t)  = u(O + iv(t) = a( t )e  i'~O formed from 
a real signal u(t) by adding its Hilbert transform v(t) = H[u(t)] as the imaginary 
part. Then, if U(to) is the spectrum of u(t), the AS is formed by adding up 
the spectral components at pos i t ive  f requencies :  

w(t)  = 1 U(~)e  i~' d ~  (6) 

Two important properties of the Hilbert transform should be mentioned: 

�9 H a r m o n i c  correspondence .  If u(t) = a cos(~0t + q~) is a harmonic 
signal of constant a > 0, ~ > 0, and ~, then v(t) = a sin(rot + q~) 
and w(t)  = ae  i('t+*). So the AS provides a common amplitude and 
frequency for all harmonic processes. 

�9 Bedrosian 's  theorem (Bedrosian, 1963). If the product l ( t) .  h(t) con- 
sists of low-frequency, l(t), and high-frequency, h(t),  factors of non- 
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overlapping spectra, then a low-frequency factor can be taken out of 
the Hilbert transform, H[l(t) .  h(t)] = l(t). H[h(t)]. 

2.2. Narrowband and Wideband Modulation 

Now we address a signal with amplitude and frequency depending on 
slow time: 

u(t) = a(et) cos[t + dp(et)] = m(et) cos t - n(et)sin t, e < <  1 (7) 

Quadrature functions m = a cos �9 and n = a sin �9 also depend on et. If 
they are differentiable r times, then, as is well known, their spectra decrease 
at high frequencies as (r r+l. With a small error e r+t, the spectra are nonover- 
lapping with a carrier frequency % = 1, and applying Hilbert transform to 
(7) and using Bedrosian's theorem, we obtain 

v(t) = m(et)H[cos t] - n(r t] 

= m(r sin t + n(r cos t 

w(t) = u + iv = (m + in)e it = a(et)e itt+~(~t)l 

So, for slow (narrowband) modulation, the AS defines the amplitude and 
frequency in the same way as for harmonic signals. Afor t ior i ,  this is true 
for smooth signals like u(t) = cos(t + ix sin et) when r = ~ and the error 
is exponentially small. 

The AS is employed in radio devices invented long before the AS was. 
Modulators, detectors, mixers, etc., contain filters separating low-frequency 
modulation from a carrier. Owing to this, Bedrosian's theorem is applicable, 
and the amplitude and frequency modulated and detected in reality agree 
with the AS (Vakman and Vainshtein, 1978). In modem communications, 
modulation is often wideband, up to the carrier frequency, but Bedrosian's 
theorem remains applicable, and the AS defines the amplitude and frequency 
for wideband signals, too. In other fields, such as frequency measurements 
and nonlinear oscillations, the AS is also advantageous (Vakman, 1994a,b). 
Obviously, at any fixed x, the AS can also be applied to real waves u(x, t). 

2.3. Physical Conditions for Amplitude and Frequency 

Only AS meets three reasonable physical conditions: 

�9 Amplitude continuity. If a small variation ~u(t) is added to u(t), then 
the associated amplitude variation ~a(t) must also be small: ~a --> 0 
for ~u --> 0. 

�9 Phase independence o f  scaling. If a signal u(t) is replaced by cu(t) 
for a real constant c > 0, then the phase and frequency must remain 
the same. 
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�9 H a r m o n i c  correspondence .  The constant amplitude and frequency of 
a simple sinusoid must retain their values. 

Any other amplitude or frequency violates at least one condition and results 
in irrelevant answers. Shown (Vakman, 1996) for time signals u(t) = 
a(t)  cos d~(t), the same conditions are reasonable for spatial signals u(x) = 
a(x)  cos ~b(x). 

2.4. Analytic Waves 

Therefore, to define the amplitude and frequency of a real wave, we 
introduce the comp lex  wave w(x,  t) = a(x, t)e icbfx't), which is the AS as a 
function of either t or x. This complex wave is referred to as the analyt ic  
w a v e  (AW). I f  a real wave is given as in (2), then according to (6), the 
associated AW is 3 

1 ~ U(k, to)e-i("~t-~)dk dto (8) w(x,  t) = a(x,  t)e i*(x't) = ~r--- 7 
. J  

In time and space, the amplitudes and frequencies of  the AW have the same 
properties as the AS. Multidimensional functions of  type (8) have been studied 
in Hahn (1992). 

As mentioned, we can also use the AS taken at a fixed x. For a real 
harmonic wave u(x, t) = cos(to0t - kox), the AS and AW are the same: 
w(x,  0 = e - i ( ~ t - ~ ) .  By virtue of  Bedrosian's theorem, they are also the 
same for band-limited (in to and k) or slowly varying running waves. More- 
over, (8) contains pos i t ive  wave numbers only, and spectral components move 
in the positive direction. Therefore, the AW is the AS for any wave running 
in this direction. 

Generally, we introduce analytic waves in both directions 

1 I f '  I i  ~ w+_(x, t) = -~i U+(k, to)e -i(~ dk dto (9) 

and arbitrary waves are superpositions of  w+ and w_. 

2.5. Running Spectra 

For a given medium, k and to are dependent variables connected with 
(3). Therefore, (8) takes the form 

3The Fourier transform (6) differs from (2) in the sign of to. This distinction is traditional for 
waves and signals, and for the form (2), the AS w should be replaced by its complex conjugate 
w* = u - iv with a spectrum of negative frequencies. However, the amplitude and frequency 
of a real signal remain the same, and we ignore this distinction in (8) correlating any one- 
sided spectrum (at positive or negative frequencies) to the AS. 



232 Vakman 

w(x, t) = -~ U(k, to)5[k - k(x, to)]e -i('t-u) dk do) 

f; 1 W(x, (o)e -i~ dto (10) 
,IT 

where W(x, to) is the spectrum of the AW at a point x. Substituting (10) into 
equation (1) and using (3) again, we come to an equivalent equation for 
the spectrum: 

32W 
0---~- + ~(x,  to)w = o (11) 

This is an ordinary differential equation since, for a fixed oJ, 310x can be 
replaced by dldx. 

For a uniform medium with k independefit of x, the general solution 
of (11) 

W(x, to) = C+(to)e ixk(~ + C_(to)e -i~k(~ (12) 

contains two spectra running in opposite directions, and w• in (9) are their 
Fourier transforms. At x = 0, the initial spectra C+_(to) are arbitrary, which 
defines arbitrary running waves. Also, it is seen from (12) that e -+~(0') is the 
transfer function of a uniform medium for the wave running in one direction. 
Its Fourier transform is the Green's function of a medium. In Section 4.1, 
the solution of (11) will be given for nonuniform media. 

3. THE WAVE CENTER AND DURATION 

To a certain degree, a running wave can be represented by its traveling 
center and duration at each point. We will show that the center and duration 
are the same for real waves and their AW and that the velocity of the center 
generalizes the group velocity in a medium. We also discuss some paradoxical 
phenomena in damping media. 

3.1. Center and Duration of a Signal 

First we consider a real signal u(t) with spectrum U(to) = A(to)e i*<~ 
and group delay "r = d~ldo~. We introduce the first and second moments 
of the signal and its duration as follows: 

I~o tu2(t) dt I~oo t2uZ(t) dt 
= , F -  , T 2 =  ( t - i ) 2 = t  2 _ ~ 2  

f~_ uZ(t) dt f~ u2(t) dt 

(13) 
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where an overbar denotes averaging in time. Clearly, the first moment ~ is 
the time position of a center, and T is the effective (quadratic) duration of 
a signal. 

Further, applying Parseval's equality to the Fourier pairs u(t) ~ U(to) 
= Ae  i* and itu(t) ~ U'(to) = [A' + i'rA]e i*, we obtain in the frequency domain: 

~ "r(to)A(to) 2 dto _ 

~oo A(to)2 dto 

I ~ [A'(to)2]A(oJ) 2 4- "i'(to)E]A(to) 2 dto 

= + "r 2 (14) 
I ~  A(to) 2 dto 

Here a double overbar denotes averaging in frequency over the amplitude 
spectrum A(to). 

So the time position of a center is the averaged group delay, and the 
duration depends on amplitude and phase variations in the spectrum. More- 
over, the amplitude and phase components are summed in quadrature with- 
out interaction. 

3.2. Relation to the AS 

For real signals, A(to) and a'(to) are even functions, and we can replace 
the limits in (14) by 0, oo. Then we come to the AS (6), and formulas (14) 
define its center and duration as well. Thus, a real signal and its AS have 
the same center and duration. 4 This is also true for the AW. 

3.3. Pure Dispersion 

In uniform media, according to (12), the running spectrum is W(x, to) 
= C(to)e  ixk(~), and generally, the complex  wave number k(to) = kr(to) + iki(to) 
defines the dispersion and damping for each frequency. Then we have 

4According to (6), the spectrum of the AS is discontinuous at to = 0 if U(0) ~ 0. Then the 
second moment of the AS ~ = f~_~ t21w(t) l 2 dt diverges even if the second moment (13) 
converges. We assume U(0) = 0 ]since a constant displacement U(0) :~ 0 is indistinctive for 
wave processes], and then the second moment exists, and the center and duration of w(t) are 
the same as those of u(t) (Kay and Silverman, 1957). 
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A(x, co) - -xti<~,) = Ao(co)e , ~(x, co) = ~o(to) + xkr(co) (15) 

O~J _ dOo dkr 
"fix, to) - dco dco + x ~ "to(to) + XXk(co) (16) 

where A0(co) and O0(co) are the amplitudes and phases of the initial spectrum 
C(co). With distance, they transform into A(x,  co) and qJ(x, co) according to 
(15). Also, "r0(co) is the group delay in the initial spectrum, whereas "rAto) is 
that in a medium per unit distance (dimensions of % and "r~ are sec and 
sec/m, respectively). 

For a pure dispersive medium of ki(co) = 0, amplitudes are conserved, 
A(x, to) = A0(co). Then, from (16) and (14), we obtain the position of the 
center at a point x: 

-t(x) = % + X'rk (17) 

w 

where To and rk averaged over the initial spectrum Ao(co) are independent of  
x. Therefore, in a uniform dispersive medium, the center moves with a 
constant averaged group delay per unit distance. It is well known that nar- 
rowband signals approximately move with the group speed for the carrier 
frequency. Relation (17) generalizes that for any signals and distances. 

Duration varies with distance. Using (16) and (14), we also obtain 

r~(x) = r~ - ~ + xar~ + (18)  

where 

r~ = ~,Too: + (~o - ~o) ~, a ~  = ('rk - ~)2, p ~ T 0 T  k ~ T o - T k  

Here To is the effective duration of  the initial signal, ATk is the variation of 
the duration due to dispersion (per unit distance), and p is a correlation factor 
between the initial group delay and that in the medium. Everywhere, averaging 
is done over the initial spectrum. 

The correlation factor may be of either sign. If p < 0, dispersion compen- 
sates for the phases of the initial spectrum. Then the signal shortens, and its 
duration achieves a minimum at x0 = - p l A T ~ .  For x > x0, phases are 
overcompensated, and duration grows again. Negative P corresponds to delay 
opposite to frequency modulation that is typical for time compression (Sec- 
tion 4.6). 
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3.4.  N o n u n i f o r m  M e d i a  

According to zeroth-order solution (24) given below, in pure dispersive 
nonuniform media, amplitudes are also conserved, whereas the phase and 
group delay are given by 

t~(x, to) = *o(to) + k(x, to) dx 

"r(x, to) = "r0(to) + l"k(x, to) dx  

Then, averaging "r according to (14), we obtain instead of (17) 

~(x) = ~ + I0C~(x) a~ (19) 

whence dt/dx =%(x)  and v(x) = dxlc#= IlTk(X) 

Thus, the local group delay (for a fixed x) averaged in frequency defines 
velocity of the center. In optics this is the velocity of a light pulse depending 
on the refractive index at each point. In quantum mechanics, this is the 
velocity of a classical particle (Section 5.2). 

3.5.  D a m p i n g  a n d  C a u s a l i t y  

In damping media, the amplitudes A(x, to) vary. Then the averaged group 
delay depends on x, and motion may be paradoxical. 

Let the initial real signal be time-limited so that u(0, t) = 0 for t < 0. 
Then, due torelativistic causality, u(x, t) = 0 for t < x/c, and the first equation 
(13) gives 

[ o~ tU2( x, 0 dt 

t(x) - - ~  _ x so that x _ c 
u2(x, t) dt c" t(x) 

J~/c 

Thus, causality limits the mean velocity xlt but not the instantaneous velocity 
dx/dt. Under causality conditions, the instantaneous velocity of a center may 
exceed c or be opposite to the mean velocity. 

We now calculate the initial velocity of a center. Using (15), we differenti- 
ate (14) and (17) with respect to x and, for x = 0, obtain 

1 _ d~(0) = 
- -  - a'k -- 2(T0ki -- WOO" ~//) (20) 

V(0) dx 

Depending on a correlation factor between To and ki, the velocity v(0) may 
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be infinite or negative, but this paradoxical behavior is explainable. Let a 
wideband chirp signal be applied to a narrowband medium, and let only its 
early or final part come through. Then the signal shortens, and its center is 
shifted in time toward the beginning or end. Such a "motion" results not 
from propagation, but from the suppression of part of the signal. Clearly, if 
the end or beginning of the signal is cut off, the center shifts in time backward 
or forward, respectively. In a damping medium, this effect is specific for 
frequency modulation, where each frequency is related to a certain time. The 
same paradox arises in quantum mechanics for tunneling through a barrier 
(Section 5). 

3.6. Pure Damping 

In the case of pure damping, the wave number is imaginary, so that k 
= iki(to), kr(to) = 0, and "ri(o) = 0. Therefore, the signal is weakened and 
distorted due to selective damping but not delayed, and "propagation" takes 
no time. 5 Possibly we should not interpret such processes as waves. More 
generally, the wave number may be imaginary for part of the spectrum and 
real for another part. Then the signal is partly weakened and partly delayed. 
This leads to considerable distortions that can be misunderstood as a loss of 
causality. The paradox of tunneling is of this kind. 

4. THE WAVE SHAPE 

We have considered the center and duration of a running wave, but not 
its shape. Now we develop two approximate methods for the shape. First an 
asymptotic solution will be constructed for a spectrum running in a slowly 
varying medium. Next we generalize Whitham's method for defining not 
only the frequency, but also the amplitude of a wave. 

4.1. Asymptotic Solution 

We return to equation (11). For real k 2 (this case includes dispersion 
and damping, since k may be real or imaginary), we multiply (11) by W* 
and, taking the imaginary part, obtain 

Im w* ; 0x \-g2x w'* = o 

Then, writing the spectrum as W(x, oo) = A(x,  ~ ) d  *(x"'), we denote • = 
O~lOx and have 

5 Nonrelativistic conditions are assumed. Otherwise, as mentioned, the finite light speed results 
in a small delay. 



Analytic Waves 237 

0 im(0a ) 0 -~x ~-~x a + i• 2 =~xx(XA2) = 0  

whence X A2 = f(to) is independent ofx. So, the running spectrum that satisfied 
equation (11) takes the form 

/ f(to) W(x, to) = Ae i* = ~[ ~ e i* 

= ~-tto). ! ~ exp i • to) dx (21) 
V X t x ,  to) 

where f(to) is found from the initial spectrum C(to) at x = 0. 
The function X is still unknown, but substituting (21) into (11), we come 

to the equation 

1 • 3 = k 2 (22) 
•  X 4 

where a prime denotes derivation with respect to x. We now suppose that 
the wave number is slowly varying, k = k(ex, to) with e < <  1. Then • also 
depends on ex, and the terms with derivatives in (22) are of the order e 2. 
Neglecting them in the first order, we have • = _k, and the second-order 
solution results by iteration. Finally, we obtain 

= {---i 1 k" 3 (_~)2] f~ the first ~ (23) 

• --- k ~ ~ + ~ for the second order 

Continuing iterations, one can find higher corrections to • of the order ~4, 
~6, etc. 

In contrast to (12), not only the phases, but also the amplitudes of the 
spectrum vary in nonuniform dispersive media. Equations (21) and (23) define 
the spectrum, and the AW w(x, t) is available by Fourier transform (10). 
Clearly, the FFT is an effective numerical method for the waves. 

Equation (21) for the spectrum looks like the WKB approximation, but 
it has another meaning, and the approximation relates to the function • only. 
We have found • asymptotically for slowly varying media. Besides, for X 
= k, the singularity at k(x, to) = 0 is integrable in (10), and the wave is 
obtainable at turning points. As is well known, the WKB approximation fails 
at these points. It can also be shown that, in the second order, the singularity 
is eliminated, and • 4 :0  even if k = 0. 
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4.2. Zeroth-Order  Solut ion 

For X = k, from (21) we have OW/Ox = ( - k ' / 2 k  + ik)W, and the zeroth- 
order equation results if we neglect k' - r compared with k 2. Then we obtain 
instead of (21) 

I f  x ] OW _ ik(x, to)W, W(x, to) -- C(to) exp i k(x, to) dx (24) 
OX L aO 

So, in zeroth order, the amplitudes are conserved even for nonuniform disper- 
sive media. Useful relations can be found within the framework of this 
approximation, and its accuracy is often acceptable (Sections 3.4, 4.7, 5.3, 
and 5.5). 

4.3. W h i t h a m ' s  M e t h o d  

This method gives another opportunity, and its basic idea is easy (Whitham, 
1974). A real harmonic wave is given by u(x, t) = cos(tot - kx), where to 
and k are constants connected with the dispersion relation 

k = k(to) (25) 

Whitham writes a general real wave in the form (5) and defines its local 
f requency and local wave  number  as 

o,1, o,1, 
to(x, t) - Ot ' k(x, t) = -0---x (26) 

His crucial assumption is that the slowly varying local k and to are connected 
with the same dispersion relation (25). 6 That leads to an equation for to(x, t) 
and, finally, determines a traveling wave. From (26) we have 

02d~ = Oto = _Ok. therefore, 0__~_~ + Ok = 0 (27) 
Ox Ot Ox Ot ' Ox Ot 

On the other hand, from (25) we have OldOt = k'(to) Oto/Ot and finally obtain 

0___~_o + -r(to) 0to 
Ox --~ = 0 (28) 

where "r(to) = k'(to) is the group delay (4). The nonlinear equation (28) can 
easily be solved (see below), which defines the traveling instantaneous 
frequency. 

6This assumption implies the AW: the AS provides slow frequency for real signals (Vakman, 
1996), and the AW does that for t~ and k. We note also that Whitham's equation (28) was 
originally derived in equivalent form for k(x, t) instead of to(x, t). 
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Obviously, Whitham's method is an approximate quasistationary 
approach replacing the global spectral frequency to by the local instantaneous 
frequency to(x, t) [and global wave number k by local k(x, t)]. 

4 .4 .  M o d i f i e d  M e t h o d  

Two imperfections of the method may be mentioned. First it determines 
the frequency but not the amplitude of a wave. Next, we do not know 
what exactly equation (28) describes, since the frequency of a real wave is 
ambiguous. Using the AW, we specify the frequency and generalize the 
method for amplitudes. 

Writing the AW in the form 

w(x, t) = a(x, t ) e  i~b(x't) = e iO(x't) 

we introduce the complex phase and complex local to and k as its derivatives, 

O0 O0 
0(x, t) = ~b(x, t) - i ln[a(x, t)], to(x, t) Ot" k(x, t) Ox 

(29) 

The dispersion relation (25) is valid for complex frequencies [k(to) is an 
analytic function], and replacing ~b by 0 in (27), we see that the same equation 
(28) is valid for the complex to(x, t). Then it determines not only the real 
frequency, but also the amplitude of the AW (more precisely, its logarith- 
mic derivative). 

4 . 5 .  C h a r a c t e r i s t i c s  

Now we point out a method for solving equation (28). The characteristics 
are the curves on the (x, t) plane for which the function to(x, t) given by the 
equation is constant, and they are defined by 

dx 1 
- - -  ( 3 0 )  

at "r( to ) 

Indeed, from (30) and (28), we have 

dt Ox dt Ot r(to----)) - ~  = 0 

So, in the characteristic (30), to(x, t) is constant. Therefore, "r(to) and dxldt 
are also constant, and the characteristic is a straight line given by 

t = ~ + x-r[to(~)] (31) 

Here ~ is the time point where the characteristic intersects the axis x = 0. 
Since to is constant in the characteristic, we can take it at ~ and write it as to(t). 
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We have solved equation (28). At x = 0, the frequency dependence to(~) 
is given as the initial condition and, for a complex frequency, it includes the 
initial amplitude, too. The dispersion relation -r(to) is also given, and equation 
(31) implicitly determines the dependence ~ = ~(x, t). Substituting this depen- 
dence into to(~), we obtain the frequency to(x, t) for any x and t. 

Finally, for the complex to(x, t) obtained, we find the complex phase 
and the AW as follows: 

O(x, t) = I to(x, t) dt + g(x), w(x, t) = e iO(x'O (32) 

and for pure dispersion, the unknown function g(x) should be found from 
energy conservation. Then I w(x, t) I defines the amplitude of a running wave, 
while its frequency results from the complex to(x, t) as its real part. 

4 . 6 .  T i m e  C o m p r e s s i o n  

As illustrated in Fig. 1, each narrow strip of a chirp signal is delayed 
by x~(to) according to its frequency. If the group delay x(to) is opposite to 
the frequency modulation to(t) in the signal, all strips will arrive at some 
point x at one instant. Then the duration shortens, the amplitude grows, and 
the signal gets compressed in time at that point. When moving further, each 
strip is delayed by its time, and the signal broadens again. 

This clarifies the idea, but not the amplitude and duration of the wave�9 
However, a modified Whitham method does that easily. For a chirp signal 

�9 . 2 / 2  with to(~) = to o + 13~ and Gausslan amphtude a(~) = e -~ , the complex 
frequency is to(~) --- too + (13 + i)~. Then, if the dispersion is linear, "r(to) 
= a'l - (to - too), equation (31) takes the form 

and gives 

t = ~ + x['r~ - (13 + i)~] 

~(x, 0 - 
t - XT 1 

I --  X(13 + i) 

t l  t 2 r 2 lr 1 

Fig. 1. Compression of a chirp signal. 
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t B t ~ 

Fig. 2. Amplitudes of  chirp signals in a medium with linear dispersion. (A) The chirp signal 
with a complex frequency to(t) = (5 + i)t; (B) the same signal with a distorted frequency ~o(t) 
= (5 + i ) t - 2 t  2. 

Therefore, we have 

I - -  XT I 
to(x, t) = too + (I 3 + i) 

1 - x(13 + i) 

(t - x'rt) 2 
0(x, t) = toot + ([3 + i) 

211 - x(13 + i)1 

Finally, normalizing the AW w = e i~ to conserve energy at each x, we find 
the amplitude and duration (see Fig. 2): 

1 [ ( t - -x ' r , )  2] 
a(x, t) = T -~  exp 2T2(x) j 

T 2 ( x ) -  132----1---1+1 + (132+ 11 132+113 x 

The duration has a minimum at x = [3/([32 + 1). The same duration results 
from (18). 

4.7.  W h i t h a m ' s  M e t h o d  for  N o n u n i f o r m  M e d i a  

In Whitham's method, derivatives of k and to are neglected, and for 
nonuniform media, this method is of  zeroth order like (24). For a group delay 
depending on x, equation (30) takes the form dx/dt = fix(x, to), and the 
characteristics are not straight lines, but obey the equation 

t = ~ + "r[x, to(t)] dx (33) 

As before, t~ is the point where the characteristic intersects the axis x = 0. 
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Solving (33) for ~(x, t), one can find the frequency and amplitude of the 
AW in a nonuniform medium (Section 5.3). The FFT of the spectrum (21) 
determines the AW more precisely. Practically, numerical solution of (33) is 
not easier than the FFT, and Whitham's method is mostly expedient in simple 
cases for analytical solutions. 

5. QUANTUM MECHANICAL WAVE PACKETS 

Now we address Schr6dinger's equation 

h---~-2 02----~-0 + ih O0 _ V(x)~ = 0 (34) 
2m Ox 2 Ot 

which defines the quantum mechanical wave function +(x, t) for a particle 
of mass m in a field of potential V(x). The wave center, as defined in Section 
3, represents the associated classical particle. Complex wave functions ~(x, t) 
are often AS and, for particles moving in one direction, they are also AW. 
That results not from our definition of amplitude and frequency, but from 
the equation itself. Therefore, possibly quantum mechanics provides a physi- 
cal basis of AS and AW. 

5.1. Dispersion Relation 

For equation (34), the general dispersion relation (3) takes the form 

k(x, to) = + " ~  x/hto - V(x) 
- h 

/ 
_ o k  _ + x /  m T(X, tO) 

0to - __2[hto V(x)] (35) 

Due to the dependence on x of the potential V(x), a wave packet ~ is moving 
in a nonuniform medium. If hto > V(x), k and "r are real, and ~ is propagating 
in a dispersive medium with the group delay decreasing at high frequencies. 
If hto < V(x), k and -r are imaginary. Then dispersion is replaced by damping, 
and a wave packet is tunneling through a potential barrier. In both cases, k 2 
is real, and the method of Section 4.1 is applicable. Three typical potential 
functions are shown in Fig. 3. For a free particle when V(x) = 0, the medium 

\ /  
A x B x C x 

Fig. 3. Potential functions: (A) dispersive motion, (B) tunneling, (C) oscillations. 
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is uniform, and k and "r are independent of x. Note also that a wideband wave 
packet may be partly propagating and partly damping. 

5 .2 .  C e n t e r  o f  a W a v e  P a c k e t  a n d  a C l a s s i c a l  P a r t i c l e  

For htO > V, the center of a wave packet represents the classical particle. 
In view of (14) and according to (19) and (35), the velocity of the center at 
a point x is given by 

? 
[ A2(tO) dtO 

1 J 
1J(x) - - - r ( 3 6 )  

u [ x/m/[2(htO - V(x))]A2(tO) dtO 
3 

Further, for a narrowband spectrum A(to) concentrated around tOo, we replace 
tO by tOo and obtain the classical velocity of a particle as well as energy balance 

v(x) = X/2(hto~ - V(x)) htoo m y  2 

m ' = T + V(x) (37) 

for the total energy E = htoo. So, the velocity of a particle is that of a wave 
center obtained by averaging over frequency (energy) components. 

5 .3 .  W h i t h a m ' s  A p p r o x i m a t i o n  

We now apply Whitham's method to equation (34). In view of (35), the 
equation of characteristics (33) takes the form 

t = ~ + ~/hto(O - V(x) 

This equation has been derived for a wave, but it is the integral of (37) and 
describes a classical motion. In fact, the classical particle starting from x = 
0 at an instant ~ with an energy hto(~) achieves the point x at the instant t 
given by (38). Nevertheless, this equation also defines the wave function. 

If we specify potential in Fig. 3A as 

V ( x ) = V o ( 1 - ~ )  f o r - X o < X < X o  (39) 

we find that equation (38) takes the form 

t = ~ + m~x02 [a r sh (~ .  h V0 ) +  ( ~  . / ~  V0 ) ]  
~/2Vo co(O-- Vo arsh v n  Vo 
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For a Gaussian initial wave packet 

*o(~) = e i~176 

at x = -x0, the complex frequency is to(O = too + i~lT2o, and for ~/T~ < <  
tOo - Volh, we obtain an approximate linear equation for 6. Solving it and 
normalizing as in Section 4.6, we finally obtain the Gaussian wave function 
of duration increasing with distance: 

(x + Xo)2hm 
T2(x) = To 2 + (40) 

8T~tOo(htO0- V0) 2 

For V0 = 0, we also obtain increasing duration for a free particle. It may be 
mentioned that for a free particle Whitham's method gives an exact solution. 

5.4. Interpretation 

Why does duration broaden in (40)? From a wave viewpoint, the compo- 
nents of various frequencies are delayed by various times. Therefore, though 
the initial packet is modulated in amplitude only, frequency modulation 
appears, which widens the spectrum. However, the spectrum is to be conserved 
(for the pure dispersion considered), and the duration increases for its nar- 
rowing. On the other hand, from a corpuscular viewpoint, particles of various 
energy (frequency) move with various speeds and disperse over a wide range 
in time (for a fixed x) or space (for a fixed t). 

5.5. Paradox of Tunneling 

When a free particle moves toward a barrier, the wave packet broadens, 
and since the group delay is less at high frequencies, frequency modulation 
appears with high frequencies at the beginning and low frequencies at the 
end of the packet. When tunneling, hto < V(x), and the wave number is 
imaginary for the low-frequency part of the spectrum. This part is stopped, 
whereas the high-frequency part passes above (or through) the barrier. 

For the initial chirp packet with Gaussian amplitude and for the potential 
(39), we have computed the spectra (21) and the wave packets inside the 
barrier (with the FFF). Due to suppression of low frequencies, the initial 
spectrum is narrowed (Fig. 4A). High frequencies passing above the barrier 
reside in the early part of the packet, and therefore the packet shortens while 
its center is shifted in time toward the beginning. So, the wave center is 
moving backward (Fig. 4B). Using (13), we have also computed the time 
positions of the center for the wave packets found in first and zeroth orders 
[with equation (24) for zeroth order]. Comparing the curves in Fig. 4C, we 
see that the zeroth-order solution is of acceptable accuracy. 
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,~' �9 
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Fig. 4. Tunneling of a chirp wave packet through a barrier. (A, B) Initial (solid line) and final 
(dashed line) spectra and amplitudes; (C) time positions of the wave center for first (solid line) 
and zeroth (dashed line) orders. Spectra and wave packets are normalized, and overall damping 
is ignored. 

The center of the transmitted packet leaves the barrier before the center 
of the incident packet has arrived. That is often understood as a loss of 
causality. This paradox has given birth to many alternative approaches, and 
the time of tunneling through a barrier is still an open question (Landauer 
and Martin, 1994). 

We believe that tunneling itself takes no time (see Sections 4.5 and 4.6), 
and within a corpuscular viewpoint, we may argue in another way. Particles 
are moving with various speeds, and only faster ones of higher energy have 
a chance of overcoming the barrier. Therefore, the mean time of arrival of 
transmitted particles is less than of all incident particles. This mean time is 
represented by the wave center. 

So, the paradox arises if we associate the wave packet with a single 
particle. However, the wave packet generally represents an ensemble of 
particles, and the barrier is merely a filter for fast (high-frequency) particles 
arriving before the others. From a wave viewpoint, this is just the same 
paradox as in Section 4.5, but no physical conflict emerges. 

5.6.  Re la t ion  to the  A S  a nd  A W  

A rigorous method for defining the spectrum of a wave function is 
separation of variables, where we seek t~(x, t) in the form 

t~(x, t) = ~ cn Tn(t)Xn(x) (41) 
n 

and functions T~(t) and X,(x)  depend on t and x separately. Then it is known 
(e.g., Saxon, 1968) that Schr/~dinger's equation (34) is satisfied by the 
time functions 

T~(t) = e -i(kn'h)t (42) 
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where hn are the eigenvalues of Hermitian operator 

h 2 d 2 
L - 2m dx 2 V(x) 

It is also known that the minimal and maximal values of hn are the minimum 
and maximum of the quadratic form 

(z_x, x )  = ~m dx 2 V(x)X X* dx 

where we have integrated by parts. So, we conclude from the last expression 
that, for positive potentials V(x) >- O, the eigenvalues h~ are negative. Then 
(41) takes the form 

~(x,  t) = ~ ,  c~X~(x)e i~ (43) 
n 

and is the AS, since frequencies ~o~ = -X, , Ih  are positive. 
The condition V(x) >- 0 is not met for a Coulomb potential V(x) = 

- 1 / I x l  and some others, so that wave functions are not AS generally. How- 
ever, the condition is met for quantum oscillators and other potentials in Fig. 
3. In the classical limit, this possibly explains the AS for common oscillators. 
On the other hand, an oscillating particle corresponds to a standing wave 
that includes two opposite AW, and spatial frequencies are both positive 
and negative. 

6. S U M M A R Y  

For real signals, amplitude and frequency are ambiguous, and the analytic 
signal has been introduced as their unambiguous definition. Analytic waves 
generalize analytic signals for running waves. Using the AW, we have clarified 
the motion of a wave center and generalized Whitham's method for not only 
the frequency, but also the amplitude of a wave. The main result obtained 
is that the group delay averaged in f requency  defines the velocity of the 
wave center at each point. We have also developed an asymptotic solution 
for running spectra in nonuniform media, and the FFT becomes an effective 
numerical method for the waves. 

Quantum mechanical wave packets are often AW or AS, whereas for 
narrowband packets, the wave center represents the classical particle. In 
damping media, paradoxical effects arise for classical waves and quantum 
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part icles ,  and seeming viola t ion o f  causal i ty  appears.  Interpreta t ion o f  the 
pa radox  is different  for waves  and part icles .  In a pure damping  medium,  the 
waves  are not delayed,  and "propaga t ion"  takes no t ime.  Also ,  the conf l ic t  
d isappears  i f  we associate  the wave  packet  with an ensemble  o f  part icles  
ins tead of  a single part icle.  
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